Collectively, my work shows that censorship evasion can be automated and that censorship infrastructures pose a greater threat to Internet availability than previously understood.
In this paper, we present the first techniques to automate the discovery of new censorship evasion techniques purely in the application layer. We present a general solution and apply it specifically to HTTP and DNS censorship in China, India, and Kazakhstan. Our automated techniques discovered a total of 77 unique evasion strategies for HTTP and 9 for DNS, all of which require only application-layer modifications, making them easier to incorporate into apps and deploy.
In this paper, we present the first purely server-side censorship evasion strategies---11 in total---enabling servers to subvert censorship on behalf of clients. We extend Geneva to automate the discovery and implementation of server-side strategies, and we apply it to four countries (China, India, Iran, and Kazakhstan) and five protocols (DNS-over-TCP, FTP, HTTP, HTTPS, and SMTP).
In this paper, we present the first purely server-side censorship evasion strategies---11 in total---enabling servers to subvert censorship on behalf of clients. We extend Geneva to automate the discovery and implementation of server-side strategies, and we apply it to four countries (China, India, Iran, and Kazakhstan) and five protocols (DNS-over-TCP, FTP, HTTP, HTTPS, and SMTP).
We present Geneva, a novel genetic algorithm that evolves packet-manipulation-based censorship evasion strategies against nation-state level censors. With experiments performed both in-lab and against several real censors (in China, India, and Kazakhstan), we demonstrate that Geneva is able to quickly and independently re-derive most strategies from prior work, and derive novel subspecies and altogether new species of packet manipulation strategies.