unCaptcha

A Low-Resource Defeat of reCaptcha's Audio Challenge

Kevin Bock, Daven Patel, George Hughey, Dave Levin

Acknowledgements

Captchas

- Completely Automated Public Turing test to tell Computers and Humans Apart
- Captchas are the primary defense for many online services against bots
 - Prevents automated account creation
 - Bot service abuse
 - Artificial flow of information

Testing for humanity with reCaptcha

2009 - 2014

- Based on transcription
- Text-based challenges
- Acquired then defeated by Google

2014 – present

- Based on recorded user interaction
- Used by hundreds of thousands of sites
- "Easy on humans, tough on bots"

reCaptcha: How it works

- Risk analysis engine takes in information from the browser
 - Most importantly: cookies
- Each time a browser interacts with a Google service, that interaction is recorded with their cookie
 - Allows for the noCaptcha reCaptcha

reCaptcha Challenges

Image recognition

- Easy for **most** humans, hard for computers
- Data strengthens other services (e.g., street view, image search)

But what about visually impaired users?

reCaptcha Challenges

Audio recognition

- Necessary for visually impaired users
- As of this paper:
 - All digits: "Two... seven... three..."
 - With gaps between numbers
 - And some distortion

Easy for most humans, but is it hard for computers?

Attacking reCaptcha - Threat Model

- Previous works assumed well-resourced attackers
- Solutions/defeats were generally:
 - Offline
 - Requiring training data
 - On powerful computers
- What is "success"?
 - 1% solving rate can be a "success"

Our Threat Model

- Assume a low-resource attacker
 - Need high success rate
 - Minimal training data
- All testing was done on a free-tier
 Amazon Elastic Computing
 t2.micro instance
 - 1GB of RAM
 - 1 virtual CPU
 - 8GB hard-drive

Actual footage of t2.micro

Talk is cheap

Why re-invent the wheel when Google, Apple, Amazon, etc. have already done it better?

Can we use Google against itself to solve captchas?

Can we leverage Speech-to-Text?

In reality

Segmentation

- Simple amplitude analysis to find split points
- Divide audio at periods of silence

Multiple Speech-to-Text Services

Submit each audio clip to six

free, public

speech-to-text

services

CMUSphinx

Multiple Speech-to-Text Services

Submit each audio clip to six free, public speech-to-text services

Phonetic Mapping

Speech-to-text services are not designed to work for only digits

Ensembling

Repeat for each digit

Demo

Experimental Evaluation

459 Audio challenges 10
Digits/challenge

4,590 Audio clips

- Overall accuracy; is it viable for a low-resource attacker?
- Benefits of phonetic mapping and ensembling?
- Limitations?

unCaptcha's Overall Performance

91.99% Digit accuracy

80.31% Captcha success

Dealing with the poor performance of "6"

Replace all unknowns ("X") with a guess of "6"

unCaptcha's Overall Performance

91.99% Digit accuracy

80.31% Captcha success

unCaptcha's Overall Performance

93.41%
Digit accuracy

85.15%
Captcha success

Benefit of Phonetic Mapping

Increased digit accuracy by 17% overall

Benefit of Ensembling

unCaptcha's Speed

22.24 secAvg. time to solve

Main bottleneck: Service response time

Trade-off for a low-resource attack

19.22 sec Avg. audio challenge

reCaptcha accepts answers before a human could listen to the challenge

unCaptcha's Speed

5.42 sec

Avg. time to solve

Main bottleneck: Service response time

Trade-off for a low-resource attack

19.22 sec Avg. audio challenge

reCaptcha accepts answers before a human could listen to the challenge

Limitations

Services are free, but have API limits

 ...yet reCaptcha is the sole defense against creating a new account on many of these services

unCaptcha could theoretically be made self-sufficient

Future Recommendations

- Increase vocabulary size
 - Mitigate the boost of the phonetic mapping

Future Recommendations

- Increase distortion
 - Negatively affect segmentation and accuracy

Future Recommendations

- Increase complexity of task
 - Semantic over syntactic

"draw a circle"

"type 'car' but **not** 'dog'"

"type only the **English** words in the following list..."

"type **every other word** in the following phrase..."

"type 'bus' **three times**"

"type only the words that rhyme in the following list..."

"type only the **animals** in the following list..."

New reCaptcha Updates

- Disclosed to Google in March
 - Already "aware of the issue" as of April
- English phrases instead of digits

"and also total in"

- Uses static instead of silence
- Better browser automation detection

Summary

- Boosts per-digit accuracy and overall captcha success by
 - Ensembling 6 online speech-to-text services
 - Phonetically Mapping their output to digits

85.15% Captcha sucess

5.42 sec Avg. time to solve

 unCaptcha proves that a low-resource, high-accuracy defeat of Google's reCaptcha system is possible

Check out project website at http://uncaptcha.cs.umd.edu

unCaptcha